### THE JOURNAL OF ANTIBIOTICS

# WS-9659 A AND B, NOVEL TESTOSTERONE $5\alpha$ -REDUCTASE INHIBITORS ISOLATED FROM A STREPTOMYCES

## II. STRUCTURAL ELUCIDATION OF WS-9659 A AND B

# OSAMU NAKAYAMA, NOBUHARU SHIGEMATSU, AKIRA KATAYAMA, Shigehiro Takase, Sumio Kiyoto, Masashi Hashimoto and Masanobu Kohsaka

Exploratory Research Laboratory, Fujisawa Pharmaceutical Co., Ltd., 5-2-3 Tokodai, Tsukuba-city, Ibaraki 300-26, Japan

(Received for publication March 17, 1989)

On the basis of spectroscopic and chemical evidence, the structures of WS-9659 A and B isolated as inhibitors of testosterone  $5\alpha$ -reductase from a *Streptomyces* have been established as 1 and 2, respectively. The reductase inhibitory activities of the derivatives 5 and 6, and degradation products 3 and 8 were considerably less active and substantially inactive, respectively.

Inhibition of the enzyme testosterone  $5\alpha$ -reductase represents a new pharmacological approach toward the treatment of benign prostate hyperplasia which appears to be mediated by  $5\alpha$ -dihydrotestosterone<sup>1</sup>). As part of a program aimed at the discovery of inhibitors of this enzyme, we isolated WS-9659 A (1) as a potent and specific inhibitor, together with WS-9659 B (2) as a minor product, from *Streptomyces* sp. No. 9659<sup>2</sup>). Herein we report the structural elucidation of these new natural products. The biological activities of the derivatives and degradation products obtained from 1 during the elucidation are also described.

The major species WS-9659 A (1) was isolated as deep blue prisms (mp  $161 \sim 162^{\circ}$ C). The molecular formula ( $C_{22}H_{24}N_2$ O) was established by elementary analysis and fast atom bombardment (FAB)-MS. The <sup>13</sup>C NMR spectrum (CDCl<sub>8</sub>) of 1 showed 22 carbon signals, of which 14 carbons were observed in the *sp*<sup>2</sup> region ( $\delta$  179.7 (s), 147.4 (s), 143.2 (d), 135.8 (s), 135.1 (s), 134.6 (d), 133.9 (d), 133.7 (s), 131.0 (s), 124.4 (d), 121.3 (s), 117.2 (d), 113.3 (d), 91.5 (d)) and the remainder (eight carbons) in the *sp*<sup>3</sup> region ( $\delta$  49.6 (t), 46.3 (t), 34.9 (t), 28.9 (s), 28.0 (q, 2 × C), 22.8 (t), 19.4 (q)).

The <sup>1</sup>H NMR analysis (CDCl<sub>3</sub>) of **1**, together with the <sup>1</sup>H-<sup>1</sup>H correlation spectroscopy (COSY) experiment, revealed two sets of serially connected aromatic protons (four protons at  $\delta$  8.33, 7.46, 7.73, 7.46; three protons at  $\delta$  6.55, 7.56, 5.86) (Table 1).

The <sup>1</sup>H NMR spectrum further showed three methyls at  $\delta 0.82$  (2×CH<sub>3</sub>) and 1.89 (1×CH<sub>3</sub>) and four methylenes at  $\delta 1.20$ , 1.55, 1.89 and 5.03.

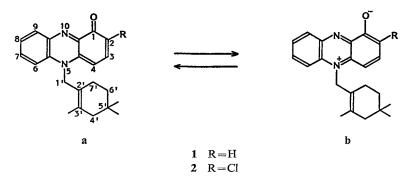
On treatment with 1 N NaOH (room temperature, 30 minutes), 1 was easily decomposed to two products 3 and 4<sup>†</sup>. The former was identified to be 1-hydroxyphenazine by inspection of its physical data (see Experimental section) and finally by comparison with an authentic sample. The other product was found to be a tetra-substituted,  $\alpha,\beta$ -unsaturated aldehyde (IR (CHCl<sub>s</sub>) cm<sup>-1</sup> 1660;  $\delta_e$  191.0 (s),

<sup>&</sup>lt;sup>1</sup> In the alkaline treatment, 1 suffered an air oxidation, yielding 3 and 4. In the literature<sup>30</sup>, a similar oxidation had also been reported on pyocyanine (9), which gave 1-hydroxyphenazine and formic acid upon treatment with alkaline.

10-COCH<sub>3</sub>

| 1                                   | 2                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.55 (d, 9.2) (or 5.86)             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                  | 6.85 (d, 8.5)                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7.56 (dd, 9.2, 7.8)                 | 7.75 (d, 8.0)                                                                                                                                                                                                                                                          | 7.20 (t, 8.0)                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.86 (d, 7.8) (or 6.55)             | 5.89 (d, 8.0)                                                                                                                                                                                                                                                          | 6.81 (d, 8.5)                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7.46 (m) (or 8.33)                  | 7.58 (d, 8.0)                                                                                                                                                                                                                                                          | 6.91 (d, 8.0)                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7.73 (ddd, 8.8, 7.2, 1.5) (or 7.46) | 7.83 (t, 8.0)                                                                                                                                                                                                                                                          | 7.18 (t, 7.5)                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7.46 (m) (or 7.73)                  | 7.55 (t, 8.0)                                                                                                                                                                                                                                                          | 7.04 (t, 7.5)                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.33 (dd, 8.5, 1.5) (or 7.46)       | 8.40 (d, 8.0)                                                                                                                                                                                                                                                          | 7.34 (br s)                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.03 (2H, br s)                     | 5.12 (2H, br s)                                                                                                                                                                                                                                                        | 4.49 (2H, br s)                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.89 (2H, br s)                     | 1.51 (2H, br s)                                                                                                                                                                                                                                                        | 1.81 (br s)                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.20 (2H, t, 6.5)                   | 1.22 (2H, t, 6.5)                                                                                                                                                                                                                                                      | 1.23 (2H, t, 6.2)                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.55 (2H, unresolved)               | 1.90 (2H, br s)                                                                                                                                                                                                                                                        | 1.81 (2H, br s)                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.89 (3H, s)                        | 1.93 (3H, s)                                                                                                                                                                                                                                                           | 1.85 (3H, s)                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.82 (6H, s)                        | 0.85 (6H, s)                                                                                                                                                                                                                                                           | 0.81 (6H, s)                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     | 7.56 (dd, 9.2, 7.8)<br>5.86 (d, 7.8) (or 6.55)<br>7.46 (m) (or 8.33)<br>7.73 (ddd, 8.8, 7.2, 1.5) (or 7.46)<br>7.46 (m) (or 7.73)<br>8.33 (dd, 8.5, 1.5) (or 7.46)<br>5.03 (2H, br s)<br>1.89 (2H, br s)<br>1.20 (2H, t, 6.5)<br>1.55 (2H, unresolved)<br>1.89 (3H, s) | 6.55 (d, 9.2) (or 5.86) $$ $7.56 (dd, 9.2, 7.8)$ $7.75 (d, 8.0)$ $5.86 (d, 7.8) (or 6.55)$ $5.89 (d, 8.0)$ $7.46 (m) (or 8.33)$ $7.58 (d, 8.0)$ $7.3 (ddd, 8.8, 7.2, 1.5) (or 7.46)$ $7.83 (t, 8.0)$ $7.46 (m) (or 7.73)$ $7.55 (t, 8.0)$ $8.33 (dd, 8.5, 1.5) (or 7.46)$ $8.40 (d, 8.0)$ $5.03 (2H, br s)$ $5.12 (2H, br s)$ $1.89 (2H, br s)$ $1.51 (2H, br s)$ $1.20 (2H, t, 6.5)$ $1.90 (2H, br s)$ $1.89 (3H, s)$ $1.93 (3H, s)$ |

Table 1. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) chemical shifts, multiplicities and coupling constants (*J*, Hz) for WS-9659 A (1), B (2) and 5.


154.7 (s), 132.3 (s);  $\delta_{\rm H}$  10.17 (1H, s). The NMR spectra further revealed the presence of two geminal methyls ( $\delta_{\rm e}$  28.0 (q, 2×C);  $\delta_{\rm H}$  0.92 (6H, s)), one methyl linked to an olefine ( $\delta_{\rm e}$  18.4 (q);  $\delta_{\rm H}$  2.12 (3H, s)), and three methylenes ( $\delta_{\rm e}$  48.1 (t), 34.4 (t), 20.0 (t);  $\delta_{\rm H}$  2.23 (2H, br s), 2.00 (2H, br s), 1.38 (2H, t, J=6.7 Hz)). These data were identical with those of  $\beta$ -cyclolavandulal (4)<sup>4</sup>). The aldehyde was thus determined to be 4.

The problem remaining for the full structure of 1 is to link 1-hydroxyphenazine (3) and  $\beta$ -cyclolavandulal (4). This was accomplished by nuclear Overhauser effect (NOE) studies on the derivatives of 1 as follows. Acetylation of 1 with Ac<sub>2</sub>O in pyridine gave diacetates 5 and 6, together with  $\beta$ cyclolavandulal (4), 1-acetoxyphenazine (7) and 5,10-dihydro-1-hydroxyphenazine diacetate (8) (4 and 8 were probably formed by hydrolysis of 6 during the workup). In the <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>) of 5, three aromatic protons adjacent to each other were observed at  $\delta$  6.81, 7.20 and 6.85 (Table 1). Irradiation of the methylene protons ( $\delta$  4.49) assignable to 1'-H (2H) enhanced the intensities of the signal at  $\delta$  6.81 (which was thereby assigned to 4-H; hence  $\delta$  7.20 to 3-H and  $\delta$  6.85 to 2-H), indicating that the  $\beta$ -cyclolavandulal substituent is linked to N-5. The aromatic proton at  $\delta$  6.91, which is one of the four serially connected protons (the others:  $\delta$  7.18 (7-H), 7.04 (8-H) and 7.34 (9-H)), was also increased in intensity on irradiation of 1'-H, being assigned to 6-H. A NOE experiment was also carried out on compound 6 and the result showed NOE's between 1'-H ( $\delta$  6.24, s) and 4-H ( $\delta$  6.85, d, J=8.2 Hz), and 1'-H and 6-H ( $\delta$  6.96, d, J=8.2 Hz), leading to the same conclusion as described above. In this latter experiment, a NOE was also observed between 1'-H and 3'-CH<sub>3</sub> ( $\delta$  2.06, s), revealing that the 1',2'-double bond in 6 is E. The structure of WS-9659 A was thus assigned to be 1.

The minor species WS-9659 B (2) was isolated as deep blue prisms (mp  $152 \sim 153^{\circ}$ C). The molecular formula,  $C_{22}H_{23}N_2$ OCl (elemental analysis and FAB-MS), showed that 2 is a chloro derivative of 1. The <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>) of 2 showed a signal pattern similar to that of 1 (Table 1). An exception is that the proton signal corresponding to that at  $\delta$  6.55 (probably 2-H) in 1 was not observed in 2. A NOE study on 2 showed that irradiation of 1'-H ( $\delta$  5.12) enhanced the intensities of the protons at  $\delta$  5.89 (4-H) and 7.58 (6-H) as in the case of 5. These facts suggested that the chlorine is located at the 2-position in 2. The structure of WS-9659 B was thus presumed to be 2. These natural products, WS-9659 A and B may exist as a mixture of tautomers a and b as depicted in Fig. 1.

2.13 (3H, s), 2.35 (3H, s)

Fig. 1. The numbering of 1 and 2.



Each of the compounds derived from 1 was evaluated *in vitro* for inhibition of testosterone  $5\alpha$ -reductase and the results were given in comparison with those of WS-9659 A (1), B (2) and pyocyanine (9) in Table 2. All the derivatives and degradation products were found to be considerably less potent or substantially inactive.

Table 2. Inhibition of testosterone  $5\alpha$ -reductase.

| Compound | IС <sub>50</sub> (м) | Compound | IС <sub>50</sub> (м) |
|----------|----------------------|----------|----------------------|
| 3        | 1×10 <sup>-3</sup>   | 8        | >1×10-3              |
| 4        | $> 1 \times 10^{-3}$ | 1        | 5×10-7               |
| 5        | 6×10 <sup>-5</sup>   | 2        | $1 \times 10^{-5}$   |
| 6        | $2 \times 10^{-5}$   | 9        | 5×10-7               |

It is notable, however, that pyocyanine showed an activity of the same order as 1.

#### Experimental

IR spectra were recorded on a Jasco A-102 spectrophotometer. <sup>1</sup>H and <sup>18</sup>C NMR spectra were measured on a Bruker AM400WB spectrometer. The chemical shifts are given in ppm ( $\delta$ ) relative to internal TMS. UV spectra were measured on a Hitachi 220A spectrophotometer. Electron impact (EI)- and FAB-MS were recorded using a VG ZAB-SE mass spectrometer. MP's were measured with a Yanagimoto microscope hot-stage apparatus and are uncorrected. Preparative TLC (PTLC) was performed on pre-coated Silica gel 60 F<sub>254</sub> plates (E. Merck). Biological assay was carried out according to the method described in the preceding paper of this series.

WS-9659 A (1): Deep blue prisms; mp 161~162°C.

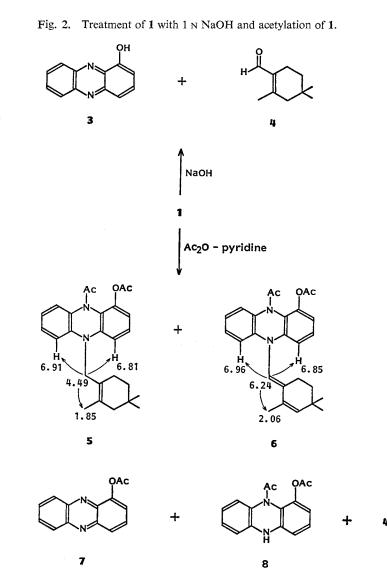
Anal Calcd for  $C_{22}H_{24}N_2O$ : C 79.48, H 7.28, N 8.43.

Found: C 79.13, H 7.13, N 8.40.

FAB-MS: m/z 333 (M+H); IR (CHCl<sub>3</sub>) cm<sup>-1</sup> 1665, 1630, 1600, 1560; UV  $\lambda_{max}^{MooH}$  nm 238, 320; <sup>18</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  179.7 (s), 147.4 (s), 143.2 (d), 135.8 (s), 135.1 (s), 134.6 (d), 133.9 (d), 133.7 (s), 131.0 (s), 124.4 (d), 121.3 (s), 117.2 (d), 113.3 (d), 91.5 (d), 49.6 (t), 46.3 (t), 34.9 (t), 28.9 (s), 28.0 (q, 2 × C), 22.8 (t), 19.4 (q).

WS-9659 B (2): Deep blue prisms; mp 152~153°C.

Anal Calcd for  $C_{22}H_{23}N_2OC1$ : C 72.02, H 6.32, N 7.64, Cl 9.66.


Found: C 71.82, H 6.37, N 7.86, Cl 9.60.

FAB-MS m/z 367 (M+H); IR (CHCl<sub>3</sub>) cm<sup>-1</sup> 1663, 1630, 1605, 1575, 1565; UV  $\lambda_{max}^{MeOH}$  nm 241, 328.

#### Treatment of 1 with 1 N NaOH

To a solution of 1 (50 mg) in MeOH (2 ml) was added 1 N NaOH (1 ml) and the mixture was stirred for 30 minutes at room temperature. After acidification to pH 1 with 1 N HCl, the mixture was extracted with EtOAc, dried over MgSO<sub>4</sub> and evaporated *in vacuo* to give an oily residue, which was purified by PTLC developing with CHCl<sub>3</sub> to give 3 (15 mg) and 4 (7.3 mg).

1-Hydroxyphenazine (3): MP 159~160°C; FAB-MS; *m/z* 197 (M+H); <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.24 (1H, dd, *J*=6 and 2 Hz), 7.79 (2H, m), 7.86 (2H, m), 8.25 (2H, m); IR (CHCl<sub>3</sub>) cm<sup>-1</sup> 1640, 1560, 1520. β-Cyclolavandulal (4): Oil; EI-MS *m/z* 152 (M<sup>+</sup>); <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 0.92 (6H, s), 1.38 (2H,

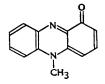


t, J=6.7 Hz), 2.00 (2H, br s), 2.12 (3H, s), 2.23 (2H, br s), 10.17 (1H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  191.0 (s), 154.7 (s), 132.3 (s), 48.1 (t), 34.4 (t), 28.7 (s), 28.0 (q, 2×C), 20.0 (t), 18.4 (q); IR (CHCl<sub>3</sub>) cm<sup>-1</sup> 1660, 1635.

#### Acetylation of **1**

To a solution of 1 (50 mg) in pyridine (1 ml) was added  $Ac_2O$  (100  $\mu$ l) and the mixture was stirred for 60 hours at room temperature. After evaporation of the mixture *in vacuo*, the residue was purified by PTLC developing with hexane - CHCl<sub>3</sub> (1:1) to give 4 (7.4 mg) and 8 (8.3 mg). PTLC was repeated on the other fractions and developed with hexane - CHCl<sub>3</sub> - EtOAc (4:4:1) to give 7 (6.9 mg). The other fractions were further developed on TLC with CH<sub>2</sub>Cl<sub>2</sub> to give 5 (9.7 mg) and 6 (3.9 mg).

Diacetate 5: Oil; EI-MS m/z 418 (M<sup>+</sup>); IR (CHCl<sub>3</sub>) cm<sup>-1</sup> 1765, 1670, 1610, 1585.


Diacetate 6: Oil; EI-MS m/z 416 (M<sup>+</sup>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.04 (6H, s), 1.43 (2H, t, J=6.5 Hz), 2.06 (3H, s), 2.19 (3H, s), 2.27 (2H, t, J=6.5 Hz), 2.37 (3H, s), 5.60 (1H, s), 6.24 (1H, s), 6.85 (1H, d, J=8.2 Hz), 6.88 (1H, d, J=8.2 Hz), 6.96 (1H, d, J=8.2 Hz), 7.07 (1H, t, J=7.5 Hz), 7.19 (1H, t, J=8.2 Hz), 7.20 (1H, t, J=8.2 Hz), 7.38 (1H, br d, J=7.5 Hz); IR (CHCl<sub>3</sub>) cm<sup>-1</sup> 1765, 1670, 1605,

1590.

1-Acetoxyphenazine (7): Oil; EI-MS m/z 238 (M<sup>+</sup>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.61 (3H, s), 7.58 (1H, dd, J=7.5 and 1.5 Hz), 7.83 (3H, m), 8.17 (1H, dd, J=8.5 and 1.5 Hz), 8.26 (2H, m); IR (CHCl<sub>3</sub>) cm<sup>-1</sup> 1765, 1630, 1600.

5,10-Dihydro-1-hydroxyphenazine Diacetate (8): Oil; EI-MS m/z 282 (M<sup>+</sup>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)

Fig. 3. Structure of pyocyanine (9).



 $\delta$  2.16 (3H, s), 2.32 (3H, s), 6.19 (1H, br s), 6.70 (1H, dd, J=8 and 1.5 Hz), 6.8 (2H, m), 7.0 (1H, dt, J=1.5 and 7 Hz), 7.11 (1H, dt, J=1.5 and 7 Hz), 7.13 (1H, t, J=8 Hz), 7.35 (1H, br d, J=8 Hz); IR (CHCl<sub>3</sub>) cm<sup>-1</sup> 1770, 1675, 1470.

## Addendum in Proof

WS-9659 A is identical to YP-0298L-C which was isolated independently by T. SATO, *et al.* (Jpn. Kokai 280,073 ('88), Nov. 17, 1988)

#### References

- 1) WILSON, J. D.: The pathogenesis of benign prostatic hyperplasia. Am. J. Med. 68: 745~756, 1980
- 2) NAKAYAMA, O.; M. YAGI, M. TANAKA, S. KIYOTO, M. OKUHARA & M. KOHSAKA: WS-9659 A and B, novel testosterone  $5\alpha$ -reductase inhibitors isolated from a *Streptomyces*. I. Taxonomy, fermentation, isolation, physico-chemical characteristics. J. Antibiotics 42: 1221~1229, 1989
- 3) SWAN, G. A. & D. G. I. FELTON (*Ed.*): Chapter X. The bacterial pigments. 1. Pyocanine. In The Chemistry of Heterocyclic Compounds. Vol. 11. pp. 174~180, Interscience Publishers Inc., 1957
- 4) LOGANI, M. K.; I. P. VARSHNEY, R. C. PANVEY & S. DEV: β-Cyclolavandulal, a new naturally occurring monoterpene type. Tetrahedron Lett. 28: 2645~2648, 1967